6 research outputs found

    Spatial information of fuzzy clustering based mean best artificial bee colony algorithm for phantom brain image segmentation

    Get PDF
    Fuzzy c-means algorithm (FCM) is among the most commonly used in the medical image segmentation process. Nevertheless, the traditional FCM clustering approach has been several weaknesses such as noise sensitivity and stuck in local optimum, due to FCM hasn’t able to consider the information of contextual. To solve FCM problems, this paper presented spatial information of fuzzy clustering-based mean best artificial bee colony algorithm, which is called SFCM-MeanABC. This proposed approach is used contextual information in the spatial fuzzy clustering algorithm to reduce sensitivity to noise and its used MeanABC capability of balancing between exploration and exploitation that is explore the positive and negative directions in search space to find the best solutions, which leads to avoiding stuck in a local optimum. The experiments are carried out on two kinds of brain images the Phantom MRI brain image with a different level of noise and simulated image. The performance of the SFCM-MeanABC approach shows promising results compared with SFCM-ABC and other stats of the arts

    Enhancing three variants of harmony search algorithm for continuous optimization problems

    Get PDF
    Meta-heuristic algorithms are well-known optimization methods, for solving real-world optimization problems. Harmony search (HS) is a recognized meta-heuristic algorithm with an efficient exploration process. But the HS has a slow convergence rate, which causes the algorithm to have a weak exploitation process in finding the global optima. Different variants of HS introduced in the literature to enhance the algorithm and fix its problems, but in most cases, the algorithm still has a slow convergence rate. Meanwhile, opposition-based learning (OBL), is an effective technique used to improve the performance of different optimization algorithms, including HS. In this work, we adopted a new improved version of OBL, to improve three variants of Harmony Search, by increasing the convergence rate speed of these variants and improving overall performance. The new OBL version named improved opposition-based learning (IOBL), and it is different from the original OBL by adopting randomness to increase the solution's diversity. To evaluate the hybrid algorithms, we run it on benchmark functions to compare the obtained results with its original versions. The obtained results show that the new hybrid algorithms more efficient compared to the original versions of HS. A convergence rate graph is also used to show the overall performance of the new algorithms

    Digital image watermarking using discrete cosine transformation based linear modulation

    No full text
    Abstract The proportion of multimedia traffic in data networks has grown substantially as a result of advancements in IT. As a result, it's become necessary to address the following challenges in protecting multimedia data: prevention of unauthorized disclosure of sensitive data, in addition to tracking down the leak's origin, making sure no alterations may be made without permission, and safeguarding intellectual property for digital assets. watermarking is a technique developed to combat this issue, which transfer secure data over the network. The main goal of invisible watermarking is a hidden exchange of data and a message from being discovered by a third party. The objective of this work is to develop a digital image watermarking using discrete cosine transformation based linear modulation. This paper proposed an invisible watermarking method for embedding information into the transformation domain for the grey scale images. This method used the embedding of a stego-text into the least significant bit (LSB) of the Discrete Cosine Transformation (DCT) coefficient by using a linear modulation algorithm. Also, a stego-text is embedded with different sizes ten times within images after embedding the stego-image immune to different kinds of attack, such as salt and pepper, rotation, cropping, and JPEG compression with different criteria. The proposed method is tested using four benchmark images. Also, to evaluate the embedding effect, PSNR, NC and BER are calculated. The outcomes show that the proposed approach is practical and robust, where the obtained results are promising and do not raise any suspicion. In addition, it has a large capacity, and its results are imperceptible, especially when 1bit/block is embedded

    Fuzzy Clustering Algorithm Based on Improved Global Best-Guided Artificial Bee Colony with New Search Probability Model for Image Segmentation

    No full text
    Clustering using fuzzy C-means (FCM) is a soft segmentation method that has been extensively investigated and successfully implemented in image segmentation. FCM is useful in various aspects, such as the segmentation of grayscale images. However, FCM has some limitations in terms of its selection of the initial cluster center. It can be easily trapped into local optima and is sensitive to noise, which is considered the most challenging issue in the FCM clustering algorithm. This paper proposes an approach to solve FCM problems in two phases. Firstly, to improve the balance between the exploration and exploitation of improved global best-guided artificial bee colony algorithm (IABC). This is achieved using a new search probability model called PIABC that improves the exploration process by choosing the best source of food which directly affects the exploitation process in IABC. Secondly, the fuzzy clustering algorithm based on PIABC, abbreviated as PIABC-FCM, uses the balancing of PIABC to avoid getting stuck into local optima while searching for the best solution having a set of cluster center locations of FCM. The proposed method was evaluated using grayscale images. The performance of the proposed approach shows promising outcomes when compared with other related works
    corecore